Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Health Care Manag Sci ; 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2048373

ABSTRACT

In this study, we address the problem of finding the best locations for mobile labs offering COVID-19 testing. We assume that people within known demand centroids have a degree of mobility, i.e., they can travel a reasonable distance, and mobile labs have a limited-and-variable service area. Thus, we define a location problem concerned with optimizing a measure representing the accessibility of service to its potential clients. In particular, we use the concepts of classical, gradual, and cooperative coverage to define a weighted sum of multiple accessibility indicators. We formulate our optimization problem via a mixed-integer linear program which is intractable by commercial solvers for large instances. In response, we designed a Biased Random-Key Genetic Algorithm to solve the defined problem; this is capable of obtaining high-quality feasible solutions over large numbers of instances in seconds. Moreover, we present insights derived from a case study into the locations of COVID-19 testing mobile laboratories in Nuevo Leon, Mexico. Our experimental results show that our optimization approach can be used as a diagnostic tool to determine the number of mobile labs needed to satisfy a set of demand centroids, assuming that users have reduced mobility due to the restrictions because of the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL